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Study of curling mechanism 
by precision kinematic 
measurements of curling stone’s 
motion
Jiro Murata

Why do curling stones curl? That is a question physicists are often asked, yet no answer has been 
established. Stones rotating clockwise curl right, contrary to our naive expectations. After a century 
of debate between contradicting hypotheses, this paper provides a possible answer based on 
experimental evidence. A digital image analysis technique was used to perform precision kinematic 
measurements of a curling stone’s motion to identify the curling mechanism. We observed a 
significant left–right asymmetric friction due to velocity dependence on the friction coefficient. 
Combined with the discrete point-like nature of the friction between ice and stone, swinging around 
slow-side friction points has been concluded as the dominant origin of the curling. Many new angular 
momentum transfer phenomena have been found, supporting this conclusion.

As one of the Winter Olympics events, the curling competition is attracting more and more attention. Along with 
the fun of the sport, there has been a lot of discussion about why the curling stone’s trajectory bends, i.e., curls, 
just like the question of the principle of a breaking ball in baseball or lift of airplanes. The curling’s mysterious 
behavior piques the public’s interest because of its opposite direction from the naively expected curling direction, 
considering the friction at the front edge. For almost a century, physicists have attempted but not succeeded in 
explaining the curling mechanism1–7. Not only that, but the situation is fraught with conflicting models, owing 
primarily to a lack of sufficient precise observation data.

Uniform friction over the bottom of curling stones cannot produce any systematic transverse momentum 
transfer. Therefore, possible hypotheses must include forward–backward asymmetry5–8 or left-right asymmetry1,9 
of the friction strength. In addition, surface roughness is often highlighted to be necessary, which may cause dis-
crete frictioning such as pivoting due to pebble structures on ice10–14 and dust and scratching on ice by the stone’s 
rough bottom surface15. If we suppose the Coulomb friction law (the dynamic friction force must be opposite 
to the velocity direction), the left-right asymmetry of the continuum friction cannot transfer longitudinal to the 
transverse momentum7. For this reason, many hypotheses recently proposed are based on the forward-backward 
asymmetry requesting stronger friction at the back edge16–22, or a creative idea of scratch-guide mechanism23–27, 
but none of which are established.

Methods
A precision trajectory measurement, including the rotation degree of freedom, was performed to begin a data-
driven model-independent discussion. A digital image analysis technique, originally developed as an optical 
alignment system for a high-energy accelerator experiment28 and as a displacement sensor for table-top gravity 
experiments29,30, was used.

The measurement was performed at Karuizawa Ice Park in Nagano. The stone’s positions were measured with 
a sub-millimeter resolution for each static video frame ( 1920× 1080 pixels) obtained at 29.97 frames/s using a 
camera set on the top view position at 1800mm above the ice surface. Positions of two labels A and B attached 
on the top surface of the stone (Fig. 1a) were measured for each frame with a time step of �t = 1/29.97 s . Then, 
positions of A and B and their center C were obtained after radial position and parallax correction as vertically 
projected positions on the ice plane. The XY coordinates were defined relative to the direction of the initial veloc-
ity. t = 0 was locally defined as the starting timing for each shot. The resolution of the image analysis system was 
σx = 47 µm which was evaluated as the standard deviation of measured C’s position x, obtained in a dedicated 
measurement using a static stone. Similarly, resolutions of C’s velocity v, acceleration a, and angular velocity ω 
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around C were obtained as σv = 2.0 mm/s , σa = 47 mm/s2 , and σω = 20 mrad/s , respectively. Here, v, ω , (a) 
were estimated by comparing two (three) sequencial frames separated with �t . The systematic (non-random) 
uncertainty, including non-linearities in the calibration, was 1.1 mm , which might affect absolute value deter-
minations. However, the corresponding relative systematic error was less than 1%, which can be regarded as 
negligible in the following discussion. The actual motion was disturbed by the messy vibration caused by the peb-
bles. All shots were made toward the X > 0 direction with counter-clockwise rotation, but their initial conditions 
were not precisely controlled because we made them manually. Instead, they were measured. The stone’s mass 
and moment of inertia were m = 18.53± 0.04 kg and I = 0.15± 0.02 kgm2 around the center axis, respectively.

Results
Figures 1, 2, and 3 show the trajectories, the time sequences of the kinematic variables for the same four typi-
cal shots, and parameter configurations. P is defined in Fig. 3, from which we can approximately determine the 
swinging center. Indeed, P exactly acts as the swinging center for a case of pure rotation around a fixed friction 
point on the left side position. We can determine P uniquely, which is defined as the intersection of two straight 
lines. In cases with no static friction points, P can be interpreted as the virtual swinging center of the stone, which 
area is extended outside the actual stone volume. Especially, Rrot ≡ CP → ∞ for pure translation with no rotation 
cases. Therefore, we can use Rrot as a quantity representing how static the left side friction is.

The most symbolic phenomenon among the obtained results was the strong swinging observed before stop-
ping, as shown in Fig. 1IV “ride-on swinging.” The stone swung around an almost static left position L ∼= P on 
the radius of Redge as a simple orbital rotation (Fig. 1d). Here Redge was set to the inner radius of the “running 
band” (contacting ring) of the stone’s bottom (Fig. 1a).

Similar relatively strong curling was observed, as shown in Fig. 1II–IV “gear-on” phase. In this phase, posi-
tions of P were not static but drifted while maintaining Rrot ∼= Redge positions (Fig. 1c). In Fig. 1III and IV, the 
velocities of L (i.e., vl ) were almost zero, as appeared as “kinks” of the label A, B’s trajectories. In fact, Fig. 2IIIa 
and IVa show vl ∼= 0 during Rrot ∼= Redge gear-on phase (Fig. 2IIId and IVd). As shown in Fig. 1II and III, P moved 
from far distances to the Redge position during the “gear-off ” phase (Fig.1b) and then remained there stably after 
this “phase transition” to gear-on phase.

gear-on

gear-on

gear-on (slow : large 0)

gear-off (fast : small  )(b)

(a)

(c)

bottom view

running band

top view

slipping

p
h
as

e 
tr

an
si

ti
o
n

engaging

fixed point

swinging around P

ride-on
swinging

(I) minimum rotation

(II) slow rotation

(III) medium rotation

gear-on

(IV) fast rotation P (gear-off)
P (gear-on)

P

P

gear-off

gear-off

1s 2s 3s 4s0s

1s 2s
0s

1s 2s 3s 4s
0s

1s
2s 3s

4s

0s

5s

5s

compressed trajectory of C

inflection-point

kinksphase transition

ride-on (fixed : )

P

(d) 0

v

v

impact parameter

b

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
 [m]X

0.2

0.1

0

0.1

0.2

0.3

0.4

 [
m

]
Y

label-A
label-A

label-B

label-B

Redge

C

C

Figure 1.   (I–IV) Examples of the curling stone’s trajectories for labels A, B, and C in the horizontal plane 
plotted for every �t (but 15�t for the dotted circles and arrows). See (a) and Fig. 3 for the definitions. Raw A, 
B positions at R = 78mm were corrected to be placed at Redge = 60mm . We obtained data sets with initial 
conditions of (I) (|ω0| < 0.3 rad/s) for 18 low-speed (v0 = 0.3− 0.7m/s) and 20 high-speed (0.7− 1.2m/s) 
shots, (II) (0.6− 1.5 rad/s) for 19 low-speed shots, (III) (2− 5 rad/s) for 47 low-speed shots, and (IV) 
(6− 9 rad/s) 18 low-speed shots. Gear-on (off) is defined as Rrot ≡ CP ≤ (>) 65mm . See Supplementary video 
online for motion capturing movie (tracking raw label A). (a–d) Stone’s geometry, interpretations of “gear-on/
off, ride-on” phases.
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The minimum rotation shot also revealed interesting features. As shown in Fig. 2Ia, the deceleration rate 
of v(t) seems to be increasing at around the end ( t > 4 s ), suggesting the existence of velocity dependence of 
the friction coefficient µ . In fact, a(t) showed a large value just before the end, implying the strong-braking, as 
shown in Fig. 2Ia and Id. At the end of this section, we will discuss the significance of this behavior of µ(v) in a 
statistical analysis. In Fig.2Ib and Id, a(t) and ω(t) were shown by rebinning the time sequence combining 8�t 
to suppress fluctuations, which resolutions were σ 8�t

a = 17 mm/s2 and σ 8�t
ω = 7.1 mrad/s2 . |ω(t)| was small, 

but it can be highlighted that the rotation direction was significantly transitioned from CW (clockwise) to CCW 
(counter-clockwise) at t ∼= 1.4 s occasionally. This transition timing coincided with the timing of the “inflection-
point”, which can be noticed if we carefully observe the compressed image of the trajectory shown in the inlet 
figure of Fig. 1I. It shows a transition of rightward to leftward curling. This result implies that ω was not simply 
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Figure 2.   Time sequences for the same shots in Fig. 1, of the kinematic variables; C’s velocities v(t), C’s 
accelerations a(t), angular velocities ω(t) , kinetic energies K.E., and Rrot(t) . The square roots of K.E. were 
plotted for the translational components mv

2/2 , the rotational components Iω2/2 , and their sums K .E.sum . 
Vertical error bars were drawn if they were not negligible. Gear-on, phase-transition, strong-braking, rotation-
acceleration, inflection-point in Fig. 1I, and constant ω are shown where they appeared.

Figure 3.   Parameter configurations. i denotes the ith frame at ti = i�t . The forward position Fi is determined 
on line Ci−1Ci  , then, φi is locally defined on the stone’s frame in CCW from this direction. Li , Ri , Fi , and Bi 
were set on Redge . Pi is defined as the intersection of lines CiLi  and Ci+1L′i  . Note that L′i is the same position 
as Li on the stone’s local frame, but that in t = ti+1 on the ice’s frame. The “swinging” arm length is defined as 
R
i
rot = CiPi = �x

i
L/tan�θi +�x

i

T , and R′i
rot = Ci+1Pi = (�x

i
L/tan�θi)/cos�θi , where �θi = ωi�t . The 

velocities of Li and Ri positions were approximately estimated as vi
l(r) = vi · [Ri

rot − (+)Redge]/Ri
rot . ωi were 

obtained from the label’s relative angular changing.
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decelerating but sometimes accelerating and that the changing of ω correlated with the curling. This “rotation-
acceleration” phenomenon can also be found in Fig. 2IIb for the slow rotation shot.

The transitioning phenomena were also found for the translational motion. In Fig. 2IIIa “phase transition,” 
the deceleration rate of v suddenly decreased after t ∼= 2 s . It was at the point that the gear-on phase began. At 
the same time, ω started a rapid deceleration (Fig. 2IIIb). This correlation can be well understood by checking 
the kinetic energies, K.E., as shown in Fig. 2IIIc. Their square roots were plotted to see quantities proportional 
to velocities. The translational and rotational components exhibited the transition, but their sum did not. This 
disappearance of the transition is particularly intriguing. It means that the total K.E. of a stone was conserved, 
except for the frictional loss while transferring the energy between translational ( 12mv2 ) and rotational ( 12 Iω

2 ) 
motions as

But the total frictional loss rate in the system did not have the sudden change at the phase-transition timing. 
It is interesting to see the common features of strong-braking in the curves showing this velocity-dependent 
frictional deceleration at the timing just before the end of v in Fig. 2Ia, IIa, IIIa and IVa, ω in Fig. 2IIIb and IVb, 
and 

√
Esum in Fig. 2Ic, IIc, IIIc and IVc.

The gear-off phase was also interesting, representing a situation in the actual curling games. ω was almost con-
stant during the gear-off phase, as shown in Fig. 2IIIb. The transfer of translational and rotational energies helps 
to explain this situation. The rotational energy was fed by the translational energy, preventing deceleration due 
to rotational friction loss (Fig. 2IIIc). Therefore, we should not simply interpret the observed stability of ω during 
the gear-off phase as a result of minimal rotational friction coefficient. In contrast, the rotational energy fed the 
translational energy, as shown in the deceleration relaxation of v shown in Fig. 2IIIa during the gear-on phase.

All shots we measured were analyzed, not only for the typical shots shown in Figs. 1 and 2. Rrot distributions 
at initial and final states are plotted in Fig. 4a, with Poisson errors =

√

sample number  . It can be confirmed 
that the convergence Rrot → Redge was the common feature of all shots, independent of the initial conditions 
(v0,ω0) , except for the minimum rotation cases. The observed peak of Rpeak

rot = 58 ± 1.3mm for the final states 
was compared with the running band regions of Rband = 65± 5mm . Then, their difference should be inter-
preted as the azimuthal angular distribution of the actual swinging center positions, which might be spread out 
at approximately ±cos−1(R

peak
rot /Rband) ∼= ±27◦ around φ = 90◦.

As shown in Fig. 2Id, µ seems strongly dependent on v. To confirm this, µ(v) might be estimated using the 
correlation between v(t) and a(t) = µg for the minimum rotation shots. However, ω of the minimum rotation 
shots was not precisely zero. Therefore, we should have considered the deceleration of v caused by energy leak-
age from translation to rotation. ṽ =

√
2K .E.sum/m and ã = dṽ/dt were used after rebinning the time sequence 

combining 8�t to suppress statistical fluctuations. Then, µ(ṽ) = ã/g was obtained as shown in Fig. 4b, using 
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the local value of the gravitational acceleration of g = 9.796m/s2 . Here, mean values and their standard errors 
(standard deviation/

√

sample number) of many ã samples from 38 minimum rotation shots, in the same ṽ bins, 
were used to obtain µ(ṽ) and their errors. The ṽ bin width of 25 mm/s was sufficiently larger than σv , and only 
data with ṽ > 10 mm/s were used.

The remarkable velocity dependence of µ was confirmed, showing a rapid increase before stopping. It meant 
that the strong-braking found in Fig. 2Ia and Id was confirmed as a common feature over all the samples in this 
statistical analysis. This is crucial to understand the curling mechanism, directly implying a friction enhancement 
on the slower side. This characteristic itself has been well known at least for a century1, as a result of ice melting. 
However, a reliable data set covering a very slow region at v < 0.1 m/s was newly obtained in this study. It owed 
to the high precision which enabled us to extend the sensitivity well down to v ∼ σv . Figure 4b also shows the 
fitting result, which may be useful for future model calculations attempting to predict the curling trajectories as 
well as microscopic studies on the physics of friction. The static friction coefficient µ0 measured using a spring 
scale was also shown, which was not used for the fitting. By utilizing this µ(v) data with m and I, one may be able 
to build a simulation tool to predict a curling stone’s motion just by inputting v0 and ω0.

Discussion
Let us now attempt to understand the obtained results shown above. First, the strong curling, as shown in 
Fig. 1IV “ride-on swinging,” was a clear indication of the existence of strong point-like frictions. It should be 
caused by pivoting due to relatively large pebbles on ice12 or dust or scratching by the rock’s rough bottom15 or 
their accidental coincidences. Therefore, these phenomena occurred by chance, with less than 50% of our rotat-
ing shots exhibiting it.

The energy/momentum transfer between translational and rotational motions was found. This was observed 
as the accelerating rotation in Fig. 2Ib and IIb, as the deceleration relaxation of v in the gear-on phase in Fig. 2IIIa, 
and as the constant ω in Fig. 2IIIb. It also meant the transfer between the orbital-angular momentum (for revo-
lution around a fixed position) L and the spin-angular momentum (for self-rotation) S31, conserving the total 
angular momentum J = L+ S , if there is no external torque. For L = mvb around a friction point and S = Iω (b 
is the impact parameter, i.e., the perpendicular distance between the path of an incident particle and the center of 
force. See Fig. 1d, the L ↔ S transfer requires offset impact, i.e., b  = 0 . Therefore, the observed angular momen-
tum transfer must be caused by point-like impacts at a non-zero net offset position 〈b〉 . Any forward-backward 
asymmetric friction cannot produce such angular momentum transfer because �b� = 0 . Angular momentum 
transfer due to an offset collision to a fixed point cannot avoid swinging. The swinging leads to the leftward curl-
ing if the impact point is at 90◦ � φ < 180◦ . This can be confirmed as a coincidence of the curling inflection and 
the ω change in the minimal rotation shot as shown in Figs. 1I and 2Ib.

The converging Rrot → Redge (Fig. 4a) can be understood as the frictional force at L being always opposite to 
the vl direction, suppressing |vl| . The observed converging vl → 0 (Fig. 2IIIa) also indicates that the friction was 
strongest at L around the φ direction in the running band. This backward friction at L assisted rotation when 
vl > 0 via the L → S transfer, preventing deceleration of ω during the gear-off phase. The stability of vl ∼= 0 and 
Rrot ∼= Redge during the gear-on phase (Fig. 2IIIa,IVa,IIId,IVd) must be due to the large local static friction µ0 at 
L . It prevented |vl| from enlargement by sequentially switching the engaging points by next-to-next, similar to 
engaging gears (Fig. 1c). The frictioning points for the gear-off phase were not static but dragged while scratching 
the ice, similar to slipping tires (Fig. 1b), which must be caused by the relatively large µ at small vl.

The observed µ(v) (Fig. 4b) indicated that the probability of having discrete impacts was greater at L than 
at R because continuum friction is not a fundamental concept but only a result of an artificial coarse-graining 
(averaging) treatment for many real microscopic impacts. As a result, it should be concluded that the combina-
tion of 1. swinging around a discrete frictioning point on the ice (pivoting/scratching)10–15 and 2. the probability 
of the discrete frictioning is greater at the slow-side than at the fast-side because the velocity dependence of µ1,10 
should be the dominant curling mechanism. The convergence vl → 0 meant the existence of force to generate 
strong local static frictioning µ → µ0 at the slow-side, which worked as the “adhesive friction” requested in the 
pivoting models10–12.

S provided the left-right asymmetry of the swinging probability but was not typically the primary momentum 
source of the swinging. That was L, which was transferred from a straight motion with the impact parameter b to 
an orbital rotational motion with the arm length b, resulting in swinging for vl > 0 , i.e., the slow rotating gear-off 
cases. S can directly contribute to the swinging via S → L transfer, but it was effective only for the fast rotation 
cases satisfying vl ≤ 0 . It should provide an answer to the known question10,23 of why the total amount of curl is 
not proportional to, and only weakly depends on, ω0 , part of which can be seen by comparing Fig. 1II and III. On 
the other hand, ω0 dependence was becoming visible in the faster rotation cases due to the contribution from S20. 
In addition, deceleration relaxation of v due to S → L transfer during the gear-on phase (Fig. 2IIIa,IVa) should 
be the direct answer to why extremely fast rotating stones tend to travel further10. The stored intrinsic rotational 
energy should have been used to help the translational motion overcome friction.

In a real curling game, the brush-sweeping is effective not only for extending the stopping range by reducing 
µ but also for controlling the curling. Indeed, sweeping on the forward-right region leads to leftward curling. It 
is because of the reduction of the discrete frictioning on the right side. The unpredictable motion of the mini-
mum rotation case is analogous to “knuckleball” in baseball, implying that a slight rotation should be preferred 
for a stable control to avoid random angular momentum transfer. The players should also remember that the 
occasional ride-on swinging phenomenon randomly affects the final stopping position.

Finally, the forward-backward asymmetry was examined. Although the inhomogeneous distribution of µ 
cannot be measured directly, we can estimate it because the discrete frictioning probability is proportional to µ . 
A useful tool was comparing the lengths Rrot and R′

rot (See Fig. 3). By defining
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The swinging center positions were estimated. For example, AP = −1 for pure rotation around P without 
drifting, and AC = O(�θ2) ∼ 0 for rotation around C with forward drifting. For rotation around F (B) with 
forward driting, AF(B) > (<)− 1 , which means that a large value of A implies swinging around F rather than B. 
Details of the estimation of R′

rot to obtain A for (P, C, F, B) are shown in Fig. 5.
Mean values and their standard errors of A for all frames in 73 completely stopped shots, except for minimum 

rotation shots, were obtained as �A� = 0.149± 0.020 (gear-on), = 0.056± 0.013 (gear-off), showing positive 
〈A〉 . Figure 4c shows the A distributions with Poisson errors, which were dominated by AC . The realistic left side 
swinging with forward drifting should be distributed in AP < A < AC , but it was not visible. This must be because 
the probability of causing A = AP is relatively negligible to A = AC . A slight asymmetry enhancing right side 
with respect to A = 0 can be noticed, indicating that A = AF was preferred to A = AB . Indeed, asymmetries of 
the integration of Fig. 4c between A > 0 and A < 0 were obtained with Poisson errors as (2.03± 0.14)× 10−1 
(gear-on), = (3.13± 0.14)× 10−1 (gear-off). This asymmetry corresponds the positive 〈A〉 . The dominant AC 
contribution should have had symmetric shapes to A = 0 , and AP must have enhanced A < 0 . Thus, the observed 
positive 〈A〉 meant that the AF-AB asymmetry was significantly positive.

This result indicated that µ(front) > µ(back) , which is naively acceptable but may lead to cause opposite 
curling. Therefore, this effect should suppress the major curling, which can provide another possible reason for 
the weak dependence of the total curl on ω0 . However, considering that the sensitivity of using A on probing 
frictioning points is not quantitatively known, we should interpret the observed statistically significant posi-
tive AF-AB asymmetry as that, we found no evidence for the unnaturally large negative asymmetry indicating 
µ(front) ≪ µ(back) requested by the previously proposed forward-backward asymmetry models5–8,16–22 in this 
method.
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A
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A
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Conclusion
In conclusion, it has been found that swinging around the discrete left-right asymmetric frictioning points is the 
dominant curling mechanism. Each part of this conclusion is not perfectly new, repeatedly suggested as attractive 
hypotheses in previous works1,10–15. Except for µ(v) , most of the featured rich results supporting the conclusion 
presented here are new, indicating the angular momentum transfer and the point-like nature of friction. Future 
model calculations must reproduce not only curling trajectories but also the phase transition and other angular 
momentum transfer phenomena. This work does not propose a hypothesis but presents the principle of curling 
based on the model-independent experimental evidence to solve this “mystery of the century.”

Data availability
The datasets generated during and analyzed during the current study are available from the corresponding 
author on reasonable request. Especially, the trajectory data will be useful to compare with simulation studies.
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